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Abstract. In this paper, we present data threaded erecution, a new
strategy to exploit both, pipelining and intra-operator parallelism in
shared-everything environments. Data threaded execution is intuitive,
straightforward to implement, but resistant against workload estimation
errors and resistant against the discretization error of processor schedul-
ing conventional strategies suffer from. Furthermore, data threaded exe-
cution minimizes startup and shutdown ezecution delays. Simulation re-
sults show that data threaded execution outperforms conventional strate-
gies significantly due to the better utilization of parallel processing re-
sources.

1 Introduction

Parallel processing in database systems is one of the keys to the required perfor-
mance improvements of modern database applications data require a higher per-
formance [DG92]. In general, parallelism for the evaluation of database queries
is classified into three main categories: inter-query, inter-operator, and intra-
operator parallelism. Inter-operator parallelism with no execution dependencies
between operators is called bushy parallelism. With a producer/consumer re-
lationship between operators, we speak of pipelining parallelism. Recently, the
use of inter-operator parallelism has been investigated [CLYY92, SD90, SYT93,
SE93, WA91]. Pipelining parallelism is of particular interest.

The major problem with the usage of pipelining parallelism are the depen-
dencies between operators, i.e. the performance of the pipelining execution is
dominated by the slowest operator. Hence, it is important to predict the work-
load of the operators as precisely as possible to determine the optimal degree of
parallelism for each operator. There are two main sources of errors: failures in the
prediction of the operators’ work (ezecution skew) and the discretization error
[SE93, WFA95], i.e. there is no discrete processors-to-operators assignment such
that every operator reaches its optimal degree of parallelism. Minimizing the dis-
cretization error by using more processes than processors as a straightforward
solution adds the significant overhead of process context switching.
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An additional problem with the dependencies between operators are startup

and shutdown execution delays [GHK92, WFA95]. Processors assigned to op-
erators at the end of a pipeline are idle at the beginning of the computation,
whereas processors assigned to operators at the begin of the pipeline are idle
towards the end of the execution.
Scope of this Paper Like in [CLYY92, SD90, SYT93] we focus in this paper
on the issue of load balanced execution of pipelining segments (PS). We assume
that an optimizer has already generated a tree-shaped query plan and partitioned
the plan in PSs with the following characteristics: (1) Only the last operator of
each segment may be a blocking operator, all other operators are non-blocking
operators. The optimizer tuned the size of each segment so that (2) all necessary
tables can be loaded in main memory and (3) all processing then can be done in
main memory. To achieve this, the optimizer splits a sequence of non-blocking
operators into multiple segments if necessary.

All segments are evaluated one after the other according to the pro-
ducer /consumer data dependencies between them. We do not consider parallel
evaluation of data independent PSs, as this obtains no performance improve-
ments [SYT93]. Evaluation of a segment proceeds in two phases: In the first
phase all inner relations of joins in the segment are loaded by parallel I/O and
the (hash) indices are built in parallel. In the second phase all tuples of the outer
relation are piped through selections, projections, or probe phases of joins.

The contribution of this paper is data threaded parallel execution (DTE),
a new parallelization strategy for efficient evaluation of the second phase of
PSs on a shared-everything system. DTE allocates processing threads not to
operators, but to data streams. Thus, DTE subsumes intra-operator parallelism
and conventional pipelining parallelism. As additional advantages it includes load
balancing, is resistant against various kinds of skew and discretization error, and
avoids startup and shutdown execution delays.

The remainder of the paper is organized as follows. In Section 2, we present
the pipelining query execution. Data threaded query evaluation is described in
Section 3. A simulation model and a comparative performance evaluation is given
in Section 4. Section 5 concludes the paper.

2 Evaluation of Pipelining Segments

Scenario To show how the different execution strategies work, we chose a rather
simple example here. Of course, all strategies presented are also applicable to
much more complex queries, consisting of arbitrary non-blocking operators.

We model a flight-information-system. The relation Connections consists of
the attributes from and to that represent airports. Each tuple (A,B) denotes
that there are non-stop flights from A to B. Table 1 shows a sample instance of
Connections. We ask for connections from JFK to SBA with two stop-overs, i.e.
with three single non-stop flights. We call this query JFK2SBA-query. A possible
query tree for this query is depicted in Figure 1. R; are instances of Connections,
I; are intermediate results, 0; are the selection and join predicates, respectively.
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Table 1. Connections Fig. 1. Query tree Fig. 2. PE

Pipelining Execution Model (PE) In PE each operator forms its own pro-
cessing stage. Inter-operator parallelism is achieved by executing each stage on
its own distinct set of processors. When using more processors than stages to
evaluate a PS, intra-operator parallelism within stages becomes possible. The
first problem to solve, is to determine the optimal degree of parallelism within
each stage. Let p be the number of processors and w the work, i.e. the total
sequential processing time, of the whole segment, then the optimal parallel ex-
ecution time is w/p. Let n be the number of stages and w; the work of stage i
(w = Y"1, w;). To achieve the optimal parallel execution time, we have to assign
i processors to each stage ¢ such that (1) > | p; = p, (2) the parallel execution
time of the stage is not longer than that of the whole segment (i.e. w;/7; < w/p),
and (3) the processors in the stage are never idle (i.e. w;/D; > w/p). We call this

processor allocation problem (PAP). The resulting equation system

w; /P =wlp & D= (wi/w)-p, ie{l,...,n}
does not have integer solutions for p;, in general. An algorithm to find integer
approximations p; > 1, which provide minimal response time and which fulfill
>-i . pi = p. is described in the extended paper [MOW96].

A first-come-first-served policy is used to distribute the tuples that are to be
processed by one stage to the processors that participate in executing this stage.
Data partitioning is not necessary. Each join needs only one shared hash table,
as all accesses during the probe phase are read-only, i.e. there are no conflicts.
Figure 2 depicts the pipelining execution of the JFK2SBA-query on 4 processors.
The shared hash tables are represented by boxes attached to the joins.

Table 2 shows a sample schedule for the JFK2SBA-query executed with PE
on 4 processors. Each row represents one unit of time, called tick. We assume
that performing a selection (S) or the probe phase of a join (P) takes one tick,
whereas performing the build phase of a join (B) takes 3 ticks. Tuples of Ry



stage 1 (og,) stage 2 (Mg, ) stage 3 (Mg, )

tick processor 1 processor 2 processor 3 processor 4

1 Sgl (l) <]

2 ||Se, (2) o

3 |56, (3) o ® ©

4 [|Se, (4) > 41 e ®

5 591(5) o sz (4.1,R2)

6 |[Se,(6) — 6.1 | B(4.1 X R2.8):

7 {|Se, (7) o| |(JFK,SLCIFK) [Py, (6.1 Rz)

8 ||Se, (8) o — 4.1.1e| B(6.1 M Ry.7):

9 {|Se, (9) o ® (JFK,CLE,MEM) [Pg, (#11,13) o
10 ||Se, (10) — 10.1 —611e ®

11 ||Se, (11) 0[Py, (10.1,R2) B(6.1 M R2.16): [P, (6.1.1,13) °
12 {|Sg, (12) — 12.1 ¢ B(10.1 X R.9): (JFK,CLE,SFO) ®

13 {|Se, (13) o| |(JFK,ABQ.JFK) — 6120

14 ||S, (14) o — 10.1.1e|Pg,(12.1,Rz) Po,(6.1.2,13)

15 (|Sg, (15) o| B(10.1 M Ry.11): | B(12.1 M Ry .2): B(6.1.2 X I3.1):

16 ||Se, (16) o| |(JFK,ABQ,SFO) (JFK,PHL,SFO) (JFK,CLE,SFO,SBA)
17 ||S, (17) o — 10126 — 12116 - 61210
18 ||Se, (18) — 18.1 e ® B(12.1 M R.15): |Pg,(10.1.1,I3) o
19 ||Ss, (19) o|Ps, (18.1,R>) (JFK,PHLJFK)  |Pg,(10.1.2,13)

20 |[Se, (20) o| B(18.1 M Ry .5): — 12.1.2 | B(10.1.2 X I5.1):

21 (JFK,GNV, JFK) (JFK,ABQ,SFO,SBA)
22 —181.1e — 10.1.2.1¢0
23 Po,(12.1.1,I3)

24 B(12.1.1 X I3.1):

25 © © (JFK,PHL,SFO,SBA)
26 © 5121110
27 Po,(12.1.2,13) o
28 P, (18.1.1,15) o

Table 2. Sample schedule (PE)

are identified by their number (cf. Tab. 1). To demonstrate how PE works,
we describe the processing of one tuple throughout the PS: In stage 1, tuple 10
(JFK,ABQ) satisfies 61, and entails (—) tuple 10.1 (JFK,ABQ). This is forwarded
(o) to stage 2, where it finds two join partners from R» ((ABQ,JFK), (ABQ,SFO)).
Hence, tuples 10.1.1 (JFK,ABQ,JFK) and 10.1.2 (JFK,ABQ,SFO) are built and
forwarded to stage 3. Tuple 10.1.1 has no join partner in I3, thus its processing
is cancelled (o). Tuple 10.1.2 finds (SFO,SBA) as join partner in I3, so that the
final output tuple 10.1.2.1 (JFK,ABQ,SFO,SBA) is built (®).

In our example, we have (w1, ws,ws) = (20,29,17) and w = 66. The exact
solution of the PAP is (p1,p2,p3) = (1.21,1.76,1.03). The best approximated
processor assignment is (py, pa, p3) = (1,2,1). This results in minimal execution
times of 20, 14.5, and 17 ticks for og,, My,, and Mg,, respectively. Thus, the
total execution time of PE using 4 processors cannot be less than 20 ticks for
the whole segment. This shows, that PE cannot reach the ideal execution time
of 66/4 = 16.5 ticks due to the discretization error. But as Table 2 shows, the
actual total execution time is even worse (28 ticks). This results from two other
shortcomings of PE: At the beginning, processors 2, 3, and 4 are idle as they have
to wait for the tuples being produced by the previous stages (startup ezecution
delay, @). For the same reason, processors 2 and 4 are idle before they finish
their work ((®). At the end, processors 1, 2, and 3 are idle until processor 4 has
finally finished (shutdown exzecution delay, ().



3 Data Threaded Execution (DTE)

The performance of PE suffers mainly from idle time. This problem is a conse-
quence of load balancing by static assignment of processors to stages. The key
idea of our approach is to assign the available processors dynamically to the data.
This leads to a much more efficient resource utilization without any additional
overhead. In contrast to PE, we gather all operators of a PS into one stage and
assign all processors to this stage. Obviously, this avoids the PAP completely.

As it is not possible to perform two operators on the same tuple in parallel,
we switch from operator parallelism to data parallelism. Data parallelism covers
both, intra-operator and inter-operator parallelism. We create only one thread
per processor to avoid context switching and scheduling overhead. Each thread
is able to perform all operations within the active PS.

Evaluation of a PS proceeds as follows: l,

The input tuples for the PS are provided in ? ? f ?

a single queue that all threads can access. ]
Each thread takes one tuple at a time from [E<164 )
this queue and guides it the way through all '3

the operators of the PS by subsequently call-
ing the procedures that implement the oper- (quz )
ators. A tuple does not leave the thread (and R

thus the processor) during its way through
the PS, until it has been processed by the last ( 09 )
operator or it failed to satisfy a selection or - T T T
join predicate. As soon as one tuple has left Lo 25 B e ]
a thread, this thread is able to process the * *R * *
next input tuple from the queue. In the case 1

that one tuple finds more than one partner in

a join (i.e. the operator produces more than Fig.3. DTE

one output tuple from one input tuple), the thread has to process all these tuples
first, before it can proceed with the next input tuple from the queue. Figure 3
depicts the data threaded execution of the JFK2SBA-query on 4 processors.

Table 3 shows one possible sample schedule for the JFK2SBA-query executed
with DTE on 4 processors. We use the same notation as in Table 2. There are
no data dependencies between the threads, as no tuple is forwarded (e) from
one thread to another. Thus, all threads start their processing simultaneously
without any idle time, and none of them is idle until it finishes its work, i.e. there
is no startup execution delay. A minimal shutdown execution delay (1 tick, (©)
cannot be avoided. This (nearly) optimal resource utilization reduces the total
execution time from 28 ticks (PE), cf. Tab. 2) to 17 ticks. Thus, in contrast to
PE, DTE (nearly) reaches the minimal execution time of 16.5 ticks.

In DTE, load balancing between the processors is automatic and dynamic,
as each thread can process the next input tuple as soon as it has finished the
processing of the former tuple. Thus, all processors are working as long as there
are input tuples in the queue. DTE optimizes resource utilization, and as no
overhead is needed to achieve this, DTE minimizes the execution time.

|
stage 1




tick thread 1 thread 2 thread 3 thread 4
1 [[Se, @) 0[S61(2) 0[Se; (3) 0[Se, (4)— 4.1
2 Sgl (5) o Sgl (6) — 6.1 Sgl (7) o sz (4.1,R2)
3 591 (8) o Pg2 (6.1,R2) 591 (9) o B(4.1 X R2.8):
4 ||Se, (10) = 10.1 B(6.1 X Ry .7): Se, (11) o| [(JFK.SLC.JFK)
5 || Pg, (10.1,Rz) (JFK,CLE, MEM) Se, (12) = 121 — 411
6 || B(10.1 X R5.9): —6.11 Po,(12.1,R2) Pos(4.1.1,03) o
7 (JFK,ABQ,JFK) Pe, (6.1.1,15) o| B(12.1 X R.2): Se, (13) o
8 —10.11 B(6.1 X Ry.16): (JFK,PHL SFO) Se, (14) o
9 || Pe,(10.1.1,I5) o |(JFK,CLE,SFO) — 1211 Se, (15) o
10 || B(10.1 X Ry .11): — 612 Po, (12.1.1,13) Se, (16) o
11 |(JFK,ABQ,SFO) Pe,(6.1.2,15) B(12.1.1 X Is.1): Se, (17) o
12 —~1012 B(6.1.2 M I3.1): (JFK,PHL,SFO,SBA)  |S4, (18) — 18.1
13| Po,(10.1.2.15) (JFK,CLE,SFO,SBA) —121.1.1Q)| Py, (18.1,Rz)
14 B(10.1.2 X I3.1): —6.12.10| B(12.1 X Ry.15): B(18.1 X Ry.5):
15 (JFK,ABQ,SFO,SBA) |Sg, (19) o| [(JFK,PHL,JFK) (JFK,GNV, JFK)
16 — 10.1.2.1|Se, (20) [ — 1212 —18.1.1
17 ® ® P, (12.1.1.2,15) o| Pe,(18.1.113) o

Table 3. Sample schedule (DTE)

4 Quantitative Assessment

The implemented simulation framework models the structure of operators, the
CPUs, the bus system, and even synchronization effects of the queuing mech-
anisms. As various experiments showed, our framework achieves characteristic
behavior even in speed-up and scale-up.

We investigate right-deep PSs consisting of joins, only. Each join consumes
materialized relations (either base relations or intermediate results) as its left
input, and the results of the preceding join as its right input. Hence, queries are
determined by a few parameters: The number of joins altogether, the number of
tuples of the right-most input relation and the selectivities of each single join.

The augmentation factor (AF) denotes the ratio of the number of input
tuples an operator consumes of the outer (piped) relation to the number of
produced output tuples. In case of selections the augmentation factor equals
the conventional selectivity. In case of joins the augmentation factor equals to
|Rr X Ro|/|Rr|, where Ry denotes the inner relation and Ro the outer one.

Within the simulation, the respective number of output tuples produced for
one single input tuple is implemented as a normal distributed number with the
given AF as mean. As a consequence, the sizes of all inner relations are given
implicitly and thus we do not need to model attribute values. To obtain stable
results we took the arithmetic middle of at least 25 runs. The size of the right-
most input relation was chosen between 10% and 10° tuples.

To examine the impact of discretization error and various kinds of data skew,
separately the respective critical parameter is variable in each experiment, while
all other parameters provide optimal adjustments for PE. In the final experiment,
all parameters are chosen randomly to give an estimation of the average case.

The first experiment examines the impact of discretization errors. Consider
a query consisting of 4 joins with an AF of 1.0 each. Whenever the number of
CPUs is a multiple of 4 PE is optimal and DTE yields only poor savings (< 6%)




40 + B

35 |

30

25

20

relative savings [%]

15

savings in running time [%]

10

0 L L L L L L
5 10 15 20 25 30 5 10 15 20 25 30

number of processors number of processors

Fig. 4. Discretization errors Fig. 5. Relative performance (query mix)

compared to PE that result from startup and shutdown execution delays. Con-
trary, in presence of discretization error DTE yields savings up to 43% (Fig. 4).
Obviously, the impact of the discretization error decreases when the number of
processors increases, because of the decreasing ratio of work one single processor
performs to the complete work, e.g. moving from 4 to 5 processors can save 20%
running time while moving from 31 to 32 can save at most 3.6%, irrespective of
the query.

The following experiments examine the case where the actual execution di-
verges from the assumed one, the static scheduling was based on. Again, consider
queries involving 4 joins with an AF of a; for the i-th stage, where a; is a nor-
mal distributed random number with mean 1.0. As a measure of deviation we
introduce the augmentation skew ¢ =3 ; (1 — a;)’ where n is the number of
stages. Our experiments show, at a skew of more than 0.35, DTE on 8 CPUs is
faster than PE on 12 CPUs. For 12 and 16 CPUs, this effect already occurs at
an augmentation skew of 0.225.

For a given number p of processors a query with at most p joins is generated
randomly, i.e. the largest queries involve 33 base relations. The AFs are chosen
randomly, too, and vary between 0.25 and 1.75. We ran 5600 different queries
where each was evaluated at least 5 times with both strategies. The important
observation with this experiment is that discretization error and data skew in-
tensify each other. DTE provides savings up to nearly 40% and more than 25%
at an average (Fig. 5). Note, that these results do not contradict to the previous
experiments, where the amount of total work was constant and the number of
processors was variable.

A detailed description of the simulation model, query configuration and fur-
ther experiments can be found in [MOW96].

5 Conclusion

This paper addresses the topic of load balanced query execution in parallel
database systems. We presented data threaded execution, a new technique for
parallel query execution in shared-everything environments. Compared to con-



ventional execution methods DTE provides substantial advantages: (1) Startup
and shutdown delays are minimized, (2) no discretization error arises, (3) less
synchronization and inter-process communication is needed, (4) implicit load
balancing establishes almost linear speedup, and (5) DTE is resistant to estima-
tion errors during optimization.

In various simulations, we compared DTE with conventional pipelining ex-
ecution (PE). In opposite to previous approaches we did not limit our consid-
erations to idealized query parameters, but also considered configurations that
cause execution and data skew. In each case, DTE outperforms the conventional
pipelining execution strategies.
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